

Journal of Organometallic Chemistry 489 (1995) C81-C83

Preliminary communication

Synthesis of sandwich and half-sandwich complexes of Ti, Zr and Hf containing η^5 -C₅H₄SiMe₂Cl ligand. Molecular structure of [TiCl₂(μ -OSiMe₂- η^5 -C₅H₄)]₂

Andrew V. Churakov ^a, Dmitry A. Lemenovskii ^a, Ludmila G. Kuz'mina ^b

^a Department of Chemistry, Moscow State University, Moscow 119899, Russia

^b N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, 31 Leninskii Prospect, V-71 Moscow 117907, Russia

Received 28 September 1994

Abstract

Reactions of $(C_5H_4SiMe_3)SiMe_2Cl$ (1) and $(\mu-SiMe_2C_5H_4)_2$ (2) with Ti, Zr and Hf tetrachlorides lead to the complexes $M(\eta^5-C_5H_4SiMe_2Cl)Cl_3$ (M = Ti, 3a; Zr, 3b; Hf, 3c). Treatment of 3a with cyclopentadienyl thallium affords Ti $(\eta^5-C_5H_5)(\eta^5-C_5H_4SiMe_2Cl)Cl_2$ (4). Dimeric oxo-derivative $[TiCl_2(\mu-OSiMe_2-\eta^5-C_5H_4)]_2$ (5) was prepared by slow hydrolysis of 3a. Structure of 5 was determined by X-ray diffraction.

Keywords: Titanium; Zirconium; Hafnium; Silicon

1. Introduction

Over the last few years a great number of early transition metal complexes containing functionalized cyclopentadienyl ligands have been prepared [1-7]. Most attention has been paid to ligands with π -donating groups (such as CpPR₂ [3], Cp₂PR [4], η^5 -indenyl [5], Cp-SiMe₂-C₅H₄-SnMe₂Cl [6], and so on) that can be modified easily just inside the transition metal complexes. However, there are only few examples of these complexes with substituents bearing an active halogen atom [7].

Electrophilic substitution in monosilylated cyclopentadienes is a well-known preparative method for halfsandwich complexes of Ti and Zr [8]. Here we report some reactions of disilylated cyclopentadienes 1 and 2 with MCl₄ (M = Ti, Zr, Hf) as an efficient synthetic route to $M(C_5H_4SiMe_2Cl)Cl_3$ and $M(C_5H_5)(C_5H_4Si Me_2Cl)Cl_2$ species.

2. Results and discussion

Compound $(C_5H_4SiMe_2Cl)SiMe_3$ (1) possesses two different Si-Cp bonds, these bonds can be attacked by various electrophilic reagents. Compound 1 could be

expected to form two products under the action of TiCl_4 (Scheme 1); however, treatment of 1 with TiCl_4 (molar ratio 1:1) in toluene at 50°C produced the observable product 3a exclusively [9] (shown by ¹H NMR spectroscopy of the reaction mixture [10]).

If pentane is employed as a solvent, complex 3a is isolated by low temperature crystallization as a yellow moisture-sensitive powder in 90% yield. The extraordinary immobility of the SiMe₂Cl group is of great importance for the following examination.

Compound 2 is an intramolecularly disilylated biscyclopentadiene with silicon atoms linked to the allyl and vinyl positions of the rings simultaneously [11]. It is suggested that consecutive cleavage of the Si–Cp bonds in 2 can lead to the mono- and bi-metallic products shown in Scheme 2. It should be noted that intermediate 6 contains a moeity similar in nature to 1; so, cleavage of the RMe₂Si–Cp bond rather than that of ClMe₂Si–Cp is strongly preferred. Really, treatment of 2 with TiCl₄ (molar ratio 1:1) in toluene or pentane at $50-60^{\circ}$ C affords 3a in a good yield (76%), but this reaction requires significantly more time (5–10 h) than a similar reaction involving 1.

The alternative products, structure 7 [12], 8 or 9, were not observed under these conditions (1 H NMR spectroscopy data for the reaction mixtures). However,

Scheme 2.

treatment of 2 with $ZrCl_4$ in warm toluene produces a mixture of **3b** [13] and $Zr(C_5H_4SiMe_2Cl)_2Cl_2$ (8) [14] in molar ratio 3:2. Complex 8 is the product of RMe₂Si-Cp bond cleavage; probably cleavage of intramolecular type. The different solubilities of 3b and 8 in hot hexane allows the separation of 3b as a colour-

Fig. 1. Important bond lengths (Å) and angles (°) are Ti(1)-C(11) 2.256(1), Ti(1)-C(12) 2.238(1), Ti(1)-O(1) 1.771(2), Si(1)-C(1) 1.862(3), Si(1)-O(1a) 1.646(2), C(11)-Ti(1)-C(12) 101.48(4), C(11)-Ti(1)-O(1) 101.71(8), C(12)-Ti(1)-O(1) 103.90(8), C(1)-Si(1)-O(1a) 106.2(1), Ti(1)-O(1)-Si(1a) 159.9(2).

less crystalline solid (45%). Analogous procedures using $HfCl_4$ produce **3c** [15] in 56% yield.

Complexes 3a-c possess two types of elementhalogen bond: metal-Cl and Si-Cl. The two types of bond show differing levels of reactivity with several nucleophiles. For example, the reaction of 3a with C_5H_5Tl in THF at room temperature yields Ti(C_5H_5)- $(C_5H_4SiMe_2Cl)Cl_2$ (4) [16] as brick-red crystalline powder (94%). However, moisture destroys both types of element-halogen bond: slow hydrolysis of a toluene solution of 3a results in crystallization of the bi-metallic oxo-complex $[\text{TiCl}_2(\mu - \text{OSiMe}_2 - \eta^5 - \text{C}_5 \text{H}_4)]_2$ (5). The structure of 5 was determined by X-ray diffraction (Fig. 1) [17].

3. Experimental details

All reactions were carried out in sealed evacuated Schlenk-type vessels. Solvents were dried by standard methods ¹H and ¹³C NMR spectra were recorded on Varian VXR-300 and VXR-400 instruments at 30°C.

References and notes

- [1] M.D. Raush, J.F. Lewison and W.P. Hart, J. Organomet. Chem., 358 (1988) 161.
- [2] K.P. Stahl, G. Boche and W. Massa, J. Organomet. Chem., 277 (1984) 113.
- [3] D. Morcos and W.R. Tikkanen, J. Organomet. Chem., 371 (1989) 15.
- [4] G.K. Anderson and M. Lin, Organometallics, 7 (1988) 2285.
- [5] F.R.W.P. Wild, J. Zsolnai, G. Huttner and H.H. Brintzinger, J. Organomet. Chem., 232 (1982) 233.
- [6] I.E. Nifant'ev, M.V. Borzov and A.V. Churakov, Organometallics, 11 (1992) 3942.
- [7] P. Jutzi and A. Seufert, J. Organomet. Chem., 169 (1979) 373.
- [8] P. Jutzi and M. Kuhn, J. Organomet. Chem., 173 (1979) 221 and references cited therein.
- [9] ¹H NMR (300 MHz, C_6D_6): δ 0.56 (s, 6H, Me), 6.20 (t, 2H, Cp), 6.59 (t, 2H, Cp). ${}^{13}C{}^{1}H$ NMR: δ 2.1 (Me), 126.5 (C(Cp)-H), 129.2 (C(Cp)-H), 134.8 (C(Cp)-Si).
- [10] (a) A.V. Churakov, Vest. Mos. Univ., (1994), in press; (b) P. Royo et al., Organometallics, in press.
- [11] V.K. Belsky, N.N. Zemlyansky, I.V. Borisova, N.D. Kolosova and I.P. Beletskaya, Izv. AN. SSSR, Ser. Khim., 5 (1981) 1184.
- [12] I.E. Nifant'ev, K.A. Butakov and Z.G. Aliev, Metallorg. Khim., 4 (1991) 1265.
- [13] ¹H NMR (300 MHz, $C_6 D_6$): δ 0.70 (s, 6H, Me), 5.88 (t, 2H, Cp), 6.42 (t, 2H, Cp). ${}^{13}C{}^{1}H$ NMR: δ 3.0 (Me), 116.0 (C(Cp)-H), 126.2 (C(Cp)-H), 122.6 (C(Cp)-Si).
- [14] ¹H NMR (400 MHz, THF- d_8): δ 0.82 (s, 12H, Me), 6.63 (t, 4H, Cp), 6.78 (t, 4H, Cp).
- [15] ¹H NMR (300 MHz, PhMe- d_8): δ 0.47 (s, 6H, Me), 6.05 (t, 2H, Cp), 6.21 (t, 2H, Cp). ${}^{13}C{}^{1}H$ NMR: $\delta - 2.0$ (Me), 120.9 (C(Cp)-H), 123.9 (C(Cp)-H), 126.2 (C(Cp)-Si).
- [16] ¹H NMR (300 MHz, THF- d_8): δ 0.77 (s, 6H, Me), 6.60 (s, 5H, Cp), 6.72 (t, 2H, Cp), 6.85 (t, 2H, Cp). ¹³C{¹H} NMR: δ 3.3 (Me), 119.3 (C(Cp)-H), 121.0 (C(Cp)-H), 121.4 (C(Cp)-H), 129.4 (C(Cp)-Si).

[17] Enraf-Nonius CAD4 diffractometer (2θ - θ scan mode, graphitemonochromated MoK α radiation, $\lambda = 0.71069$ Å). Monoclinic, space group $P2_1/n$, a = 9.447(7), b = 10.920(2), c = 10.494(3)Å, $\beta = 95.92(5)^\circ$; V = 1077.6(9) Å³; Z = 2; $D_c = 1.584$ g cm⁻³; $\mu = 1.35$ cm⁻¹; $2 < \theta < 36^\circ$; R(Rw) = 0.0321 (0.0358) for 2249 reflections with $F > 2\sigma(F)$ (unique data: 2260). The structure was solved by direct method (SHELXS) and refined by full-matrix least squares. All non-hydrogen atoms were determined using a difference Fourier map and refined anisotropically. Detailed crystallographic results are available from the authors.