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Abstract 

Reactions of (CsH4SiMe3)SiMe2C! (1) and (/z-SiMezCsH4) a (2) with Ti, Zr and Hf tetrachlorides lead to the complexes 
M(@-CsHaSiMezC1)CI 3 (M = Ti, 3a; Zr, 3b; Hf, 3c). Treatment of 3a with cyclopentadienyl thallium affords Ti(@-CsHs)(@- 
CsHaSiMeECI)CI 2 (4). Dimeric oxo-derivative [TiCIz(/~-OSiMez-@-CsH4)]: (5) was prepared by slow hydrolysis of 3a. Structure 
of 5 was determined by X-ray diffraction. 
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1. Introduction 

Over the last few years a great number of early 
transition metal complexes containing functionalized 
cyclopentadienyl ligands have been prepared [1-7]. 
Most attention has been paid to ligands with r-donat- 
ing groups (such as CpPR z [3], CpzPR [4], r/S-indenyl 
[5], Cp-SiMe2-CsH4-SnMe/CI [6], and so on) that can 
be modified easily just inside the transition metal com- 
plexes. However, there are only few examples of these 
complexes with substituents bearing an active halogen 
atom [7]. 

Electrophilic substitution in monosilylated cyclopen- 
tadienes is a well-known preparative method for half- 
sandwich complexes of Ti and Zr [8]. Here we report 
some reactions of disilylated cyclopentadienes 1 and 2 
with MCI 4 (M = Ti, Zr, Hf) as an efficient synthetic 
route to M(C5HnSiMeaCI)CI 3 and M(CsHs)(CsH4Si- 
Me2CI)CI e species. 

2. Results and discussion 

Compound (CsH4SiMeeCI)SiMe 3 (1) possesses two 
different Si-Cp bonds, these bonds can be attacked by 
various electrophilic reagents. Compound 1 could be 
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expected to form two products under the action of 
TiCI 4 (Scheme 1); however, treatment of 1 with TiC14 
(molar ratio 1:1) in toluene at 50°C produced the 
observable product 3a exclusively [9] (shown by ~H 
NMR spectroscopy of the reaction mixture [10]). 
If pentane is employed as a solvent, complex 3a is 
isolated by low temperature crystallization as a yellow 
moisture-sensitive powder in 90% yield. The extraordi- 
nary immobility of the SiMe2C1 group is of great im- 
portance for the following examination. 

Compound 2 is an intramolecularly disilylated biscy- 
clopentadiene with silicon atoms linked to the allyl and 
vinyl positions of the rings simultaneously [11]. It is 
suggested that consecutive cleavage of the Si-Cp bonds 
in 2 can lead to the mono- and bi-metallic products 
shown in Scheme 2. It should be noted that intermedi- 
ate 6 contains a moeity similar in nature to 1; so, 
cleavage of the RMe2Si-C p bond rather than that of 
C1Me2Si-Cp is strongly preferred. Really, treatment of 
2 with TiC14 (molar ratio 1 : 1) in toluene or pentane at 
50-60°C affords 3a in a good yield (76%), but this 
reaction requires significantly more time (5-10 h) than 
a similar reaction involving 1. 

The alternative products, structure 7 [12], 8 or 9, 
were not observed under these conditions (1H NMR 
spectroscopy data for the reaction mixtures). However, 
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Scheme 2. 

less crystalline solid (45%). Analogous procedures us- 
ing HfC14 produce 3c [15] in 56% yield. 

Complexes 3a -c  possess two types of element- 
halogen bond: metal-C1 and Si-C1. The two types of 
bond show differing levels of reactivity with several 
nucleophiles. For example, the reaction of 3a with 
CsHsT1 in THF at room temperature yields Ti(CsHs)- 
(CsH4SiMe2C1)C12 (4) [16] as brick-red crystalline pow- 
der (94%). However, moisture destroys both types of 
element-halogen bond: slow hydrolysis of a toluene 
solution of 3a results in crystallization of the bi-metallic 
oxo-complex [TiCI2(/z-OSiMe2-r/5-CsH4)]2 (5). The 
structure of 5 was determined by X-ray diffraction (Fig. 
1) [17]. 

3. Experimental details 

All reactions were carried out in sealed evacuated 
Schlenk-type vessels. Solvents were dried by standard 
methods 1H and 13C NMR spectra were recorded on 
Varian VXR-300 and VXR-400 instruments at 30°C. 

treatment of 2 with ZrC14 in warm toluene produces a 
mixture of 3b [13] and Zr(CsH4SiMezCI)2C12 (8) [14] 
in molar ratio 3:2. Complex 8 is the product of 
RMeeSi-Cp bond cleavage; probably cleavage of in- 
tramolecular type. The different solubilities of 3b and 8 
in hot hexane allows the separation of 3b as a colour- 
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Fig. 1. Important bond lengths (A) and angles (o) are Ti(1)-C(ll) 
2.256(1), Ti(1)-C(12) 2.238(1), Ti(1)-O(1) 1.771(2), Si(1)-C(1) 
1.862(3), Si(1)-O(la) 1.646(2), C(ll)-Ti(1)-C(12) 101.48(4), C( l l ) -  
Ti(1)-O(1) 101.71(8), C(12)-Ti(1)-O(1) 103.90(8), C(1)-Si(1)-O(la) 
106.2(1), Ti(1)-O(1)-Si(la) 159.9(2). 
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